On a new condition for strictly positive definite functions on spheres

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strictly Positive Definite Functions on Spheres

In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...

متن کامل

A Necessary and Sufficient Condition for Strictly Positive Definite Functions on Spheres

We give a necessary and sufficient condition for the strict positivedefiniteness of real and continuous functions on spheres of dimension greater than one.

متن کامل

Strictly positive definite functions on spheres in Euclidean spaces

In this paper we study strictly positive definite functions on the unit sphere of the m-dimensional Euclidean space. Such functions can be used for solving a scattered data interpolation problem on spheres. Since positive definite functions on the sphere were already characterized by Schoenberg some fifty years ago, the issue here is to determine what kind of positive definite functions are act...

متن کامل

On a New Condition for Strictly Positive De nite Functions on Spheres

Recently, Xu and Cheney (1992) have proved that if all the Legendre coeecients of a zonal function deened on a sphere are positive then the function is strictly positive deenite. It will be shown in this paper, that even if nitely many of the Legendre coeecients are zero, the strict positive deeniteness can be assured. The results are based on approximation properties of singular integrals, and...

متن کامل

Multivariate positive definite functions on spheres

In 1942 I.J. Schoenberg proved that a function is positive definite in the unit sphere if and only if this function is a positive linear combination of the Gegenbauer polynomials. In this paper we extend Schoenberg’s theorem for multivariate Gegenbauer polynomials. This extension derives new positive semidefinite constraints for the distance distribution which can be applied for spherical codes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1997

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-97-03634-4